Pore scale models for imbibition of CO2 analogue fluids in etched micro-fluidic junctions from micro-model experiments and direct LBM flow calculations
نویسندگان
چکیده
We investigate both drainage and spontaneous imbibition processes at the pore scale using a combination of microfluidic experiments and lattice-Boltzmann (LB) flow calculations. First, we have fabricated a range of specifically designed etched micro-models to investigate the role of pore shape and throat width on fluid displacement. These designs include junctions with both equal and unequal channel widths in order to achieve a range of capillary entry pressures. All models were etched into Poly(methyl methacrylate) (PMMA) and chemically treated to create a hydrophobic surface. The displacement process is captured via a high-speed video microscope under ambient conditions. The experimental results were then directly compared with LB simulations. For the drainage experiments, we observe that the fluid displacement in the junction follows the Young-Laplace Law. For the case of spontaneous imbibition, however, the models with unequal channel widths display different displacement behaviour. Our experimental observations are confirmed in detail by Lattice Boltzmann Method (LBM) simulations, lending credibility to our observations. Instead of following Young-Laplace filling rules, we observe that the throat in closest proximity fills up first. This has potentially important consequences for calculation of residual saturation of CO2 at the core scale, which is determined by spontaneous imbibition of brine following CO2 injection. © 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of GHGT
منابع مشابه
An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data
With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملA novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.
In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has been etched in glass by using a dry etchi...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملAbsolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کامل